
ED 060 628

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 634

Bork, Alfred M.; Mosmann, Charles
Teaching Conversations with the XDS Sigma 7. Systems
Description.
California Univ., Irvine. Physics Computer
Development Project.
National Science Foundation, Washington, D.C.
26 May 71
25p.

MF-$0.65 HC-$3.29
Computational Linguistics; *Computer Assisted
Instruction; *Computer Programs; Program
Descriptions; Programed Instruction; Programing;
*Programing Languages; Programing Problems
Macros; Metasymbol; Sigma 7

Some computers permit conventional programing
languages to be extended by the use of macro-instructions, a
sophisticated programing tool which is especially useful in writing
instructional dialogs. Macro-instructions (or macrols) are complex
commands defined in terms of the machine language or other
macro-instructions. Like terms in higher-order languages they can
expand to a variable number of actual machine instructions. The
system described here is based on the use of the macro-assembler of
the Sigra-7 computer, called Metasymbol. Metasymbol allows for the
use of machine language, the definition and use of
macro-instructions, and the inclusion of FORTRAN subroutines. This
system allows the teacher considerable flexibility in composing
instructioTsal dialogs. Specifics of programing are discussed, and an
example computer run given. (RB)

pcdp

TEACHING CONVERSATIONS WITH THE XDS SIGMA 7

System Description

Alfred M. Bork
Charles Mosmann

University of California
Irvine, California 92664

May 26, 1971

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

physics computer development project, university of california, irvine, 92664

CONTENTS

1. INTRODUCTION

2. A SIMPLE OVERV

3. DESCRIPTION OF

Formal S

Displayi

Acceptin

Analyzin

Manipula

Manipula

Using Co

Restart

Saving S

Emplayi

Ending

4. GRAMMATICAL R

5. DEVELOPING

6. EXAMPLE OF A

7. BIBLIOGRAPHY

6. 11 AP :4 14

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

CONTENTS

1. INTRODUCTION

2. A SIMPLE OVERVIEW

3. DESCRIPTION OF COMMANDS

Fc..-mal Statements

Displaying Information to the Student

Accepting Information from the Student

Analyzing Student Input

Manipulating Strings

Manipulating Numbers

Using Counters

Restart

Saving Student Responses

Employing FORTRAN Subroutines

Ending the Program

4. GRAMMATICAL RULES

5. DEVELOPING AND IMPLEMENTING STUDENT-COMPUTER DIALOGUES

6. EXAMPLE OF A DIALOGUE

7. BIBLIOGRAPHY

8. ACKNOWLEDGEMENTS

131

The system

INTRODUCTION of the sig

the use of

Computer dialogues for instructional purposes are sometimes written tions, and

in specialized languages developed for just that purpoSe (Course- Metasymbol

writer, Foil, Planit). Such languages have special advantages, FORTRAN an

particularly for authocs unskilled in computer programming; but applicatio

limitations may exist and the skilled programmer is prevented from

using the full power of the computer. Also, they are available These cap

only on particular machines. An alternativeis the use of general use in dev

purpost; computer languages; such languages as SNOBOL, PL/1, JOSS, using it a

BASIC, and FORTRAN have been used for teaching conversations. The developed

advantage of such languages is that most of the facilities of the we written

computer are available to the teacher, although practically it may described

bo difficult to employ particular facilities. Further, they are added to

widely available. A third alternative--the use of machine Lan- sharing mo

guages--has almost never been considered. Although it allows flexibilit

maximum flexibility to the programmer, coding directly in machine system is

language tends to be slow, complex, and expensive. However, some dialogues.

modern assetbly prograLs permit machine language-to be extended plete.--on

by the use of macro-im.tructions. Using sudh a system, the pro- tional fea

grammer has the facility to extend ile language by adding his own depends, o

complex commands (called "macro-irrstructions" or "macros") and but the id

defining them in terms of the machine language or other macros. macro-ass

Like terms in higher-order languages, these macro-instructions, can

expand to a variable number of actual machine instructions, thus

providing sophisticated programming tools.

1 purposes are somet.imes written

for just that purpoSe (Course-

ages have special advantages,

in computer programming; but

led programmer is prevented from

er. Also, they are available

lternative is the use of general

anguages as SNOBOL, PL/1, JOSS,

for teaching conversations. The

most of the facilities of the

her, although practically it may

facilities. Further, they are

tive--the use of machine lan-

idered. Although it allows

er, coding directly in machine

, and expensive. However, some

chine language to be extended

Using such a system, the pro-

the language by adding his own

tructions" or "macros") and

ine language or other macros.

es, these macro-instructions, can

ual machine instructions, thus

g tools.

Fi2

The systeni described here is based on the use of the macro-assembler

of the Siama-7 computer, called "Metasymbol." Metasymbol allows for

the use of machine language, the definition and use of macro-instruc-

tions, and the inclusion of FORTRAN subroutines. Thus the user of

Metasymbol has the total flexibility of machine language with both

FORTRAN and added facility to add the terms he needs for his particular

application.

These capabilities make a macro-assembler extremely attractive for

use in developing a system for producing instructional dialogues. In

using it as the basis for our system, we cannot say that we have

developed a language for composing conversational programs; nor have

we written a compiler or interpreter of some language. The system

described here.is simply a flexible set of macro-instructions which,

added to the existing capabilities of Metasymbol and the BTM time-

sharing monitor on the Sigma-7, allows a teacher considerable

flexibility and convenience in writing instructional dialogues. The

system is now available and is being used to write instructional

dialogues. It 0ould be clear that such a system is never "com-

plete"--one of its major advantages is the ease with which addi-

tional features can be added and new terms be defined. The system

depends, obviously, on the facilities of Metasymbol and the Sigma-7;

but the idea could easily be adapted to any computing system with a

macro-assemi:ler of the general type of Metasymbol.

83

A SIMPLE OVERVIEW

An example will help to introduce the subject. The following flow

chart illustrates a small part of an instructional dialogue. The

situation is trivial, presumably for a first grader; it is used

here only for illustrative purposes.

A message is typed to the student; a student response, typed at the

terminal, is accepted; various scans are made on the input informa-

tion and, depending on that input, decisions are made and responses

are typed to the student. The rounded boxes on the chart contain

messages to be typed and the square box shows the responses antici-

pated. In this example, first the message "What is 5 x 6?" is typed.

If the student responds with the correct answer, we tell him, "good";

if he is adding, me tell him and let him try again. In all other

cases, he is simply Ssked to try again.

The corresp

ment leads

types a que

whether cer

branches if

the anticip

labels whic

in the prog

133

c . The following fie.'

uctional dialogue. The

t grader; it is used

t response, typed at the

de on the input infurma- SYSTEM DIALOG

ns are made and responses

es on the chart contain MES1 WRITE 'WHAT IS 5 x 6?'

ows the responses antici- INPUT

"What is 5 x 6?" is typed. IF '11',MES2

swer, we tell him, "yood"; IF 'ELEVEN',MES2

again. In all other IF '30',MES3

IF 'THIRTY',MES3

OTHER MES4

MES2 WRITE 'YOU ARE ADDING. TRY AGAIN'

TO MES1

MES4 WRITE 'NO. TRY AGAIN'

TO MES1

NES3

134

The corresponding program segment is shown below. The WRITE state-

ment leads to the message appearing on the student terminal. INPUT

types a question mark and waits for student input. IF checks to see

whether certain strings are present in what the student types and

branches if so. OTHER shows where control is to go if one of

the anticipated inputs is not found. Some of the lines begin with

labels which allow the IF and TO statements to refer to these points

in the program.

.

END DIALOG

DESCRIPTION OF COMMANDS

The simple example shown above used only a few commands; a large

repertory is available. The following paragraphs offer brief des-

criptions of most of them, grouped more or less by function. Some

more esoteric ones are omitted for the sake of brevity; there are

also a nuMber of synonyms of the more Important commands which are

not included here. The intention is to give the reader a feeling

for the kinds of capabilities available. The Users Manual includes

precise and more detailed descriptions of the functions of each of

the commands.

1. Formal Statements

It is important to remember that the system is actually no more than

a set of terms or commands which are defined so that they may be used

with Metasymbol. Thus the conventions of that program (and the

operating system in which it is eMbedded) must be adhered to. The

conventions for format of statements, legal statement labels, and so

on, are described briefly below in Chapter 4 ("Grammatical Rules")

and will be found in detail in documentation of Sigma-7 software.

(See Bibliography.)

SYSTEM. The first statement in a program must be
SYSTEM DIALOG. This informs the Metasymbol assembly
program that the program which you have written uses
the dialogue macro-instructions described here.

NAME. The author may wish to assign a unique name to
his instructional program. If he wants it to be called
"PHYS," for instance, the second statement of his pro-
gram should be NAME 'PIM'.

7

B5

EN
Th
st
la
wh
st
to

2. Displayi

WR
ti
co
wh
it
ST
th
ch
wi
co
me
ti
an

OU
it
ma
ar

SR
in
is
5

po
di

sc

3. Acce tin

IN

B5

few commands; a large

agraphs offer brief

less by function.

e of brevity; there

des-

Some

are

rtant commands which are

ve the reader a feeling

The Users Manual includes

the functions; of each of

m is actually no more than

d so that they may be used

that program (and the

must be adhered to. The

1 statement labels, and so

4 ("Grammatical Rules")

on of Sigma-7 software.

a program must be
Metasymbol assembly

ou have written uses
described here.

sign a unique name to
he wants it to be called

statement of his pro-

END. The last statement of any program must be END.
The statement END XYZ indicates that this is the last
statement of the program and also that the statement
labelled XYZ is the first statement to be executed
when a student uses the instructional dialogue. The
statement END DIALOG indicates that the program is
to begin with the NAME or START command.

2. Displayinginformation to t:he student

WRITE. This is the basic command for causing informa-
tion to be typed (or otherwise displayed) at a student
console. The argument (that part of the statement
which follows the word WRITE) can be the information
itself, enclosed in single quotes: WRITE 'THIS /S A
STRING'. Or it can refer to a string by name rather
than directly: WRITE MES8 causes the string of
characters stored at MESS to be typed. (Section 5
will explain how strings are stored.) This is more
convenient than repeating the message if the same
message is to be used in several places. Each execu-
tion of a WRITE command begins with a carriage return
and line feed, starting a new line.

OUT. This command is the same as WRITE except that
IE-Will not begin a new line. This can be useful in
making up a display line out of several strings which
are stored or computed independently.

SKIP generates one or more blank lines. The argument
INarcates the number to be skipped; if the argument
is omitted, one line is assumed. Thus SKIP 5 generates
5 blank. lines; SKIP generates one.

GRAPH. The instruction GRAPH X,Y,20 will graph 20
points using numbers stored in X as the horizontal
displacement and the corresponding values stored in
Y as the vertical displacement. All numbers will be
scaled.

3. Accepting information from the student

INPUT. This command will cause a carriage return, two
rag-feeds and a question mark to be executed at the
student terminal. Then it waits for the student to
enter material. The student indicates that his message
is complete by executing a carriage return. The

136

B7

maximum amount of material he can enter is set at
380 characters but this can easily be extended. (He
can use line feeds for long inputs--he isn't expected
to get 380 characters on one line!)

INBELL is an alternative to INPUT. It does not return
the carriage or type a question mark; rather a bell is
sounded to indicate that input is expected. This form
: useful for completing equations or sentences or
filling in tabular data.

4. Analyzing student input

IF is a flexible command for examing student input.
Some examples may best display its power. IF
'vELOCITY',734 means that if the word VELOCITY is
anywheieIii-the material which the student has just
typed, then the next statement to be executed is
that labelled 734. IF M3,T34 means if the string
at M3 is in the input, gc to T34. IF ('HORSE','COW',
'PIG'),734 means that the branch is to occur if any
of the three strings appears. If the conditions of
an IF statement are not met, the next statement in
sequence is executed.

IFONLY. The IF command searches for a match any-
where in the student input; IFONLY calls for an
exact match between the indicated string and the
student input.

IFNULL. Students often enter nothing, pushing only
the carriage return key. This command checks for
'this condition and branches to an author-supplied
message.

IFYES checks for various possible affirmative
replies.

/FBEFORE takes into account the relative position
EFiTnE7oils in the response. It refers to the last
successful match in an IF statement. For example,
the sequence:

IF 'ENERGY',E1

El IFBEFORE 'POTENTIAL',E2

tests first to see whether the word ENERGY appears
anywhere in the input and, if it does, then tests

137

he can enter is set at
easily be extended. (He
inputs--he isn't expected

e line!)

INPUT. It does not return
tion mark; rather a bell is
put is expected. This form
uations or sentences or

examing student input.
lay its power. IF
f the word VELOCITY is
ich the student has just
ent to be executeri is
34 means if the string
o T34. IF ('HORSE','COW',
ranch is to occur if any
s. If the conditions of
, the next statement in

rches for a match any-
IFONLY calls for an

icated string and the

er nothing, pushing only
his command checks for
to an author-supplied

ssible affirmative

the relative position
It refers to the last

tatement. ror example,

IAL',E2

the word ENERGY appears
if it does, then tests

to see whether the word POTENTIAL appears in the
string after the last matched word.

IFF/LTH has been found useful in some contexts: it
checks the input line for a number of common examples
of objectionable language.

OTHER. A series of IF statements may be followed by
an OTHER which indicates the action to be taken if none
of the conditions specified in the IF statements occur.
It converts to a GOTO or unconditional branch instruc-
tion.

5. Manipulating Strings

Before attempting to match a string, it may be desirable to modify

the student input, putting it into some more standarized format.

The string manipulation commands provide this capability.

NOBLANK., One problem- immatching formu-lae: or equa--
tions is that blanks may appear in random places.
This command removes all blanks from the input string.

DELETEALL removes from the input all occurances of a
specified string. Thus, DELETEALL 'AND' removes the
word "and" everywhere it appears in the student input.

SUBALL. The author may wish to modify the input in
other ways. This command replaces all occurances of
one symbol string with another. Thus, SUBALL'"',t'
replaces the double asterisk with an up-arrow where-
ever it appears.

ADDAST, which takes formula input by students and
1701g-forms it into a BASIC-like form. It inserts
asterisks between letters, or between numbers and
letters; it replaces the FORTRAN double asterisk
with an up-arrow; it deletes blanks; etc.

MOVE. Sometime.s it is convenient to store all or
part of an input string for later r.ce. The various
forms of the MOVE command facilitate this. MOVE A,B
moves the entire string A to location B. MOVE A,B,5
moves the first five characters from A to B.

DEFINE. To secure space for moving, it is necessary
to define a label and indicate how long a string it
is to hold. The statement DEFINE B,50 reserves space
for fifty characters, with the label B.

88

119

STRING. If characters are to be stored into a string
IFIrtially, this command is used. L3 STRING 'VELOCITY'
indicates that the eight character string "VELOCITY' is
to be stored at label L3. (Strings are stored in a
fashion different than that used in most Sigma-7 software.
The first word contains the number of characters; the DEFN
characters begin in the second word. used-

if m

NUMW
6. Manipulating numbers four

Numbers typed by students appear initially as characters in strings. RAND
in X

To use these numbers dn internal calculations, it is necessary to are

convert them to a suitable form. To display the results of com-

putation the reverse conversion is needed. The following commands

facilitate these conversions.

NUMBER. An input string which should be only a number
In character form can be converted into a real number
by means of this command. The statement NUMBER TIME,
NOGOOD will examine the contents of the input, either
converting it to floating point form and storing it at
TIME or (if this is not possible because of extraneous
characters, etc.) branching to NOGOOD.

7. Using Coun

Often in a dia

student has be

branch or ano

student should

and testing

SCAN. To separate a string into the part containing a COU1
number.and the strings before and after the number, one and
can use this command. SCAN NUMST,STBEF,STAF,ERR means is
.store the number string in NUMST, the characters ind,
preceding it in STBEF, and the characters following in 5.
STAF; if the string has no recognizable number, branch to
to ERR.

BUM
SCAN# performs the same functions as SCAN but converts by
the numerical portion into a floating point number,
rather than transferring it as a character string DEC
(i.e., it is equivalent to SCAN followed by NUMBER). by

IFNUMEX will test a string to see whether it is a RES
number. The command branches to the specified location A a
if the string is exclusively a number.

ADD
AROUND tests a floating point number (Ni to see whether ADD
It ls within a given range (E) of a number quantity (5) sum
and if so, branch (GOTO): AROUND N,S,E,GOTO.

o be stored into a string
sed. L3 STRING 'VELOCITY'
rector string "vELOCITY is
Strings are stored in a
sed in most Sigma-7 software.
umber of characters; the
d word.

ally as characters in strings.

lations, it is necessary to

isplay the results of com-

ded. The following commands

ich should be only a number
verted into a real number
he statement NUMBER TIME,
ents of the input, either

oint form and storing it at
sible because of extraneous
to NOGOOD.

into the part containing a
re and after the number, one
NUMST,STBEF,STAF,ERR means

NUMST, the characters
the characters following in
recognizable number, branch

ctions as SCAN but converts
a floating point number,
as a character string

SCAN followed by NUMBER).

to see whether it is a
es to the specified location
y a number.

nt number to see whether
(E) of a number quantity (S)
OUND N,S,E,GOTO.

119

BETWEEN tests the size of a floating point number.
BETWEEN N,BOTTOM,TOP,GOTO tests whether N is greater
than BOTTOM and less than TOP and branches to GOTO if
this is the case.

DEFNUM reserves storage for a number which is to be
used in the program. The argument is the name (or names,
if more than one) of the variable.

NUMWRITE starts a new line and then prints from one to
four numbers.

RANDOM generates random numbers. RANDOM X,A,B stores
ln X a random number between A and B, or, if A and B
are omitted, between 0 and 1.

7. Using Counters

Often in a dialog the instructor wants to note how many times the

student has been through a given loop, whether he.has taken one

branch or another, or his past performance, to determine where the

student should go next. The mechanism for doing is as though setting

and testing counters.

COUNTER is the command to identify the name of counter
and set its initial value. COUNTER A indicates that A
is a counter with an initial value of zero. COUNTER B,S
indicates that B is a counter with the initial value of
5. COUNTER (C1,C2,C3) indicates that three counters are
to be established with initial values of zero.

BUMP increases the value of a specified counter or counters
ETUne: BUMP (C1,C2).

DECREASE decreases tte value of the specified counter(s)
by one.

RESET resets the Fpecified counters. RESET (A,B) ,3 resets
A and B to 3. If the number is omitted, zero is assumed.

ADDCOUNT adds the aontents of specified counters:
ADDCOUNT A,B adds counter A to counter B and stores the
sum in A.

12

MO

4

TO with a single argument is a simple unconditional
branch statement. The statement TO FRAME4,(ZZ,GE,5),
however, will cause a branch to FRAME4 if and only if
counter ZZ is greater than or equal to 5. The second
part of the second argument indicates the logical relation-
ship and can be any of the following, with the usual
meaning: GT, NE, LT, LE, EQ, GE. If it is omitted, GE
is assumed.

SWITCH is an alternate command for testing a counter.
It works like a FORTRAN computed GOTO. SWITCH A,(AO,A1,
A2,A3,A4) indicates the labels of locations to be branched
to when the counter A has the values of 0, 1, 2, 3, and 4;
if A is greater than 4, the next statement is executed.

8. Restart

Sometimes it is inconvenient for a student to finish an entire con-

versational lesson in one sitting. A facility to let him pick up

where he left off keeps him from going through the whole thing again.

ENTRY is the command which permits restart. Whenever one
is executed as a student uses the program, its location
and the student ID are saved on disk. Thus, the latest
entry point which the student has reached is presaVia:
This is the point from which he will be restarted.

9. Saving Student Responses

The author may winh to nave information about ntudent ronponnon for

later study and as an input for later revisions of his program.

SAVE copies onto a disk file the current contents of
the input buffer, togther with time and date. This
record is identified by a name supplied as an argument
to SAVE. The command can also be used to save the
value of the counters.

SAVEID does the same thing but, in addition, saves the
ifilligEt's ID.

The

of t

sort"

10.

It

is p

as f

11.

e unconditional
FRAME4,(ZZ,GE,5),
E4 if and only if
to 5. The second
s the logical relation-
, with the usual
it is omitted, GE

esting a counter.
O. SWITCH A,(AO,A1,
cations to be branched
of 0, 1, 2, 3, and 4;

tement is executed.

finish an entire con-

y to let him pick up

h the whole thing again.

restart. Whenever one
rogram, its location
k. Thus, the latest
eached is prese71707
1 be restarted.

studf.nt ronponson for

ns of his program.

rrent contents of
and date. This

lied as an argument
sed to save the

addition, saves the

B11

The teacher can access the files created by using available facilities

of the Sigma-7 system, particularly "Ferret", or through special

sorting programs.

10. Employing FORTRAN subroutines

It is possible to use the full power of FORTRAN within a dialog. This

is particularly useful when a large amount of calculation is required,

as for simulation.

FORTRAN is the command to introduce such a subroutine.
A typical command is FORTRAN POLLY,(X,Y,Z) where POLLY
is the name of the FORTRAN subroutine and X, Y, and Z
are the arguments for the subroutine. The routine it-
self must be compiled in the background.using the
FORTRAN ry compiler and loaded along with the rest of
the program.

11. Ending the program

STOP. At a point in the
to terminate because the
be the last statement in
written), this statement
program.

program where the student is
lesson is over (this may not
the-program as the program is
is used to terminate the

- 14

1313

GRAMMATICAL RULES

Only a few simple grammatical rules need to be followed in preparing

programs. As indicated earlier, these are largely dictated by the

conventions of Metasymbol and other systems programs on the Sigma-7.

A statement label can be placed in any statement but it is usually

only useful if the statement is referred to by another statement.

All labels must begin at the beginning of the line; an initial space

indicates that the statement has no label. The same label can be

used only once; multiple appearances would make references to that

label ambiguous.

A command should be preceded and followed by at least one space. Some

commands have several arguments: There should be no spaces between

them as the first space after the arguments indicates the end of the

statement. (Spaces within literals are an exception.)

Literal strings are enclosed in single quotes. To indicate a single

quote as part of a string, two successive single quotes must be used:

for example, 'THIS ISN"T CORRECT'.

DEVELOPING AND IM

Developing and en

can be done in ma

evolve its own st

possible procedur

can perform most

Design and coding

The initial task

people with both

into effective wa

experience with

involved with it.

the kinds of thin

the specification

them.

This might be a f

Section Two. The

parti=lar comput

serve other funct

to document a pro

teachers to look

might want to use

13.13

to be followed in preparing

largely dictated by the

ms programs on the Sigma-7.

atement but it is usually

to by another statement.

the line; an initial space

The same label can be

d make references to that

by at least one space. Some

ould be no spaces between

ts indicates the end of the

exception.)

otes. To indicate a siagle

single quotes must be used:

B14

DEVELOPING AND IMPLEMENTING STUDENT-COMPUTER DIALOG

Developing and cntering conversational computer teaching sequences

can be done in many different ways. Each individual or group will

evolve its own style for such work. This section suggests one

possible procedure, attempting to involve people in the jobs they

can perform most efficiently.

Design and coding

The initial task is the design of the material. This must involve

people with both detailed knowledge of the subject matter and insight

into effective ways of teaching it. These individuals ma-z have little

experience with computer programming and little desire to become

involved with it. They will naturally require a good understanding of

the kinds of things which are possible but they will want to produce

the specifications for their dialogues in the form most convenient to

them.

This might be a flow chart formsimilar to the one shown above in

Section Two. The material in this form could be independent of any

particular computer system and of any language. The flow chart would

serve other functions as well. A good flow chart is an excellent way

to document a program. It will also be a convenient way for other

teachers to look over the material quickly so as to decide whether they

might want to use it with their students.

Ri 5

The next stage is to convert the flow chart into the statements which The nex

will make up the program and enter these statements into the computer. on disk

The system we have employed has been to type the statements directly person

from an on-line terminal using a text-editing program (EDIT) available progra

on.the Sigma-7. Since a vast amount of typing is necessary even for command

a simple dialogue, a very useful practice has been to use professional assista

typists for the bulk of the work of transcribing programs from flow grammer

charts. omissio

Althoug

The typists who will do the work are shown some flow charts and given accepta

simple explanations of how they work. They are then introduced to the

use of computer terminals and the conventions of the editing system. Assembl

With some assistance at first, the typist is Able to type- directly from After t

the flow chart. Thus, she knows that when she sees the square boxes, assembl

she will have to write a series of IF statements, and that the being

rounded boxes lead to WRITE. Experience both at Irvine and at Harvard

indicates that competent secretaries quickly pick this up. During Metasy

the first few sessions, someone experienced in using the terminal control

(perhaps a-student) should be present to give advice when unusual the dis

situations arise, file t

in the

A complicated dialog will have areas which cannot be transcribed "DIALOG

successfully by the secretary. The secretary is told that if she does program

not understand something, she should put a row of asterisks. This

serves as a marker to indicate-that some editing work is needed at Here is

this point. binary

input f

name)

R1 5

chart into the statements which The next step is the conversion of the secretary's material, as stored

ese statements into the computer.

to type the statements directly

editing program (EDIT) available

of typing is necessary even for

tice has been to use professional

ranscribing programs from flow

shown some flow

They are then

ventions of the

pist is able to

charts and given

introduced to the

editing system.

type directly from

when she sees the square boxes,

statements, and that the

nce both at Irvine and at Harvard

quickly pick this up. During

ienced in using the terminal

to give advice when unusual

which cannot be transcribed

ecretary is told that if she does

put a row of asterisks. This

ome editing work is needed at

on disk, into a working program. A student assistant may be the best

person to perform this task. He need not have a detailed knowledge of

programming but he must undersand flow charting and the use of the

commands better than the typist. If problems arise which the student

assistant

grammer.

:omissions

cannot handle, he should have access to an experienced pro-

He uses the on-line editing facility to correct errors or

of the typists and leaves a complete program stored on disk.

Although it may still contain errors, it is now a program in the form

acceptable to the Metasymbol assembler.

Assembly

After 4he conversational program has reached this state, it must be

assembled into a working (binary) program, debugged, and tested before

being released for student use.

Metasymbol programs must be assembled as a batch job, either from

control cards or from a terminal in the BTM system. In either case,

the disk file continuing the course material will be the source input

file to the assembler. The dialog facilities are kept as a "system"

in the Sigma-7 Metasymbol sense; it is stored on disk under the name

"DIALOG". It is this system to which the initial statement of the

program refers.

Here is a procedure for assembling the program, using BTM and assuming

binary output. The file with the conversation program (the source

input file) is called COURSE, (you might, of course, give it a different

name) and the file for keeping the binary output of the assembler is

T11 7

2OURSEBO (again, not a required name). The following 'cards' would debugging aid

perform the assembly: programmer in

labelled stat

!JOB (accounting information--inquire locally entry.
for details)

!LIMIT (TIME,5)
The final ver

!ASSIGN M:SI,(FILE,COURSE)
should be gen

!ASSIGN M:B0,(FILE,COURSEBO)
easy to call

IMETASYM LS,SI,B0,AC(9999)

System dialog is assumed to be in account 9999. The METASYMBOL option

BO and SI specify binary output and source input. LS means "list

source." (Other options are available. The reader is referred to the

Metasymbol manual, referenced in the Bibliography, for details.)

As with all programs of any complexity, several runs will be necessary

before an error-free assembly is achieved. The assembly program will

identify errors; the cause of the trouble is usually obvious once

pointed out; occasionally, however, the advice of an experienced pro-

grammer may be necessary.

Running the program

The result of the successful assembly is a binary file, a program

almost ready to run. This binary file can be loaded from a terminal.

The authors will want to try the programs, looking for bugs, after it

has been assembled successfully; copies of the flow chart and the

program are valuable aids during this testing. The main branches will

all have to be checked; however, testing of this kind will not discover

all the bugs only student use will do that! DELTA (an on-line

19

1RU

LOA

; G

(PRO1 is the

the computer.

When the stud

procedure, p

the word STOP

program, he i

tries this di

following 'cards' would

ion--inquire locally

999. The METASYMBOL option

input. LS means "list

e reader is referred.to the

graphy, for details.)

eral runs will be necessary

The assembly program will

s usually obvious once

ice of an experienced pro-

binary file, a program

be loaded from a terminal.

ooking for bugs, after it

the flow chart and the

ng. The main branches will

this kind will not discover

DELTA (an on-line

debugging aid on the Sigma-7) is also very useful to the experienced

programmer in program checking, as it allows the user to go to any

labelled statement: he need not start trom the beginning or a restart

entry.

The final version of the program, which will be used by the student,

should be generated as a "load module." The student will then find it

easy to call for it:

1RUN

LOAD MODULE FID: PROP

;G

(PROP is the name of the program; underscored Characters are yped by

the computer.)

When the student wants to leave the program he can follow the usual

procedure, pressing the escape key twice or he can type, at any input,

the word STOP. If he types STOP and if restarts are included in the

program, he is reminded to use the same identificatIon the next time he

tries this dialog.

1319

EXAMPLE OF A DIALOG 1 cenTL WR/

Perhaps the best explanation of the dialog system is an illustration. MR1
MP]

The fragment of a dialog on the following page is a typical example 6q1

79

of.the material which has been writtel. using this facility. The reader lo ceKT hRITE
7,3

may wish to examine it rather closely, for it illustrates several L24 kES
mi

aspects of the system. IFFIV14. CIF
m2 IF

IF

I.

The first thing he may notice 4.s that most of the commands are "WRITE"; iF

IF

few of the more exotic commands described in Chapter Three have been IF

20
used. This is to be expected; the bulk of these programs is made up SAN

Te
of conversations with the student and there is remarkably little other

wR1

coding. WR]
hR:
hR:

TO

30
wr4

ts1

TO
L25 ..._

wR

1.26 Sh

L28
TO

L29 MR
TO

L30 VA
VA
uR
Te

1.301 WPI'
wPir

1.33 MR
hR

LL25 hR
hR

50 hR
Mg

ELEC2 hR

The example is indeed a fragment, chosen out of the middle of a much

longer lesson. Hence it has no beginning (SYSTEM DIALOG) or end

(END DIALOG). The counters (.3LEC,GRAV) are defined elsewhere in the

program. It should be possible for the careful reader to follow the

dialog and'see how it is constructed. Some additional clues are

provided on the page following the dialog itself. If one follows

all the paths through the segment, he will see that they all come

out again at L36, which is the beginning of the next part of the

program.

40

hR
SKII

TO

1319

m is an illustration.

a typical example

facility. The reader

lustrates several

e commands are "WRITE";

pter Three have been

programs is made up

emarkably little other

the middle of a much

DIALOG) or end

ned elsewhere in the

reader to follow the

tional clues are

. If one follows

t they all come

next part of the

112U

CeNT1 _WRITE_ IRQR_RROBLE°_ IS_TP FIKD CMEV
WRITE 'MEASL,RE OF THE RELATIVE STRFNGTR, OF°
WPITE 'ELECTRICAL ANC GRAVITATIO1/4wL FV.RCE.'
WRITE 'D5 TOL 4.qAVE ANY SLGGESTIUN AS 78 Ak l'oPeRTAkTf
MRITE 'PHYSICAL SYSTEM Wi4ERE ROTH ELECTRICAL'
%RITE
wRITE 'PRESENT '

TR LE4
10 C5KT WRITE 1Y51.0'RE 08ING FINE'

TA OUT
L24 kFSET

'ANC GRAVITATIONAL FORCE MUST BO

PP1 INPUT
IPPILTH C/R72

m2 IF 1YESIAL25
fek.O1,1-26

17 'ELEC,.L33
IF IPROT'43C
IF CISW.ISTAR'AIGALAXI,,THERmeNv).LL25
Ir (oHv2R9',IALemf),L3C1

20 LMP GRAV
SAVE 'SYSTEM'
Te GRAV2sCGRAv,2)
kRITE 'I"M...AVING_TREILSLE_UM;ESTA!%0ING'
WRITE 'YOU. HE WANT A SYSTEM THAT IS eF FUND.'
wRITE IAMENTAL ItAPtiRT_ANCE,B.LT IS STILL 1

wRITE 'SIMPLE AND FASILY ANALYZABLE.5E7CRE'

WRITE
:Wiln.a!!N, THINK eF FLKDAYENTALIiRITE

TO mi
30 LEC.I. _BOP ELEC.__

wPiTE 'THINK AEOUT ELEMENTARY PARTI-ELESO

ml
'TRY AGAIN'

TO
wRIT7

L25 ITE 'THEN TELL ME _,A
L26 Sw1TCw ELEC,CT.LEC14ELEC2)
L28 WITTE ITW1

TO L33

rI
en3L29

40 L3Q %RITE
WRITE
wRITE IdF ELECTkeNSO

L
Te L36-

301 WRITE 'ATOMS ARE A PessIEILITY st.,T
WRITE 1I.AM PROGRAMMED PeR A PAIR eR ELECTReNS.I.L36

L33 WRITE c3eeD...1.E WILL wORk WITH A PAIR'

LL25
WRITE leF ELECTRONSi..L36
WRITE IA SLN ISACOrIPLEx 7j7E.R',9NUCLEA_R_SysTEMI_
WRITE IINVOCCING ALL 1l4 FORCES. OLT wE KEE6 A7

50 WRITE ISLMFLER PHYSICAL SYSTEM. MAKE ANCTHER STAE,
WRITE 'AT IT.I.m1

ELEC2 WRITE ITRY,INSTEAD CF ANSw.ERING Ne
WRITE 1... WE WANT TWO ELECTRONS.'

SKyp 3.

121

'PROTONS ARE A...reS5;PILITYOLLI_AmL!.
05NEY PROGRAMMED TO CONSIDER A FAIR'

1321

Line 1 and line 9: CONTI and CONT are alternate entries to this

portion of the program, depending on factors which have

gone before.

Line 9: This statement means that the program is to go to CONTI if

the counter ELEC is greater than or equal to 1. IF ELEC is

zero, "You're doing fine" is typed first.

Line 10. Note the use of double quotes to indicate single quotes

inside a literal.

Line 12: Before entering the major set of decisions in this segment,

the counters which will be used are reset to zero.

Line 13: The student is asked to respond and the response is

examined for various key words.

Line 20: /f none of the anticipated responses is received, the

'counter GRAV is "bumped" or increased and another message

is written (lines 21-28.) Note that the author has chosen

to SAVE all responses which did not include any of the

anticipated key words, to analyze later.

Line 22: If the student has given unanticipated responses twice

(when GRAV is greater than or-equalto_ 2),no further

attempt is made to get the answer out of him; he is told

what the correct response is (at GRAV2).

BIBL

This

of t

depe

foll

Thes

Addi

more

syst

Syst

syst

re alternate entries to this

pending on factors which have

program is to go to CONTI if

than or equal to 1. IF ELEC is

is typed first.

tes to indicate single quotes

set of decisions in this segment,

used are reset to zero.

spond and the response is

ords.

responses is received, the

r increased and another message

Note that the author has chosen

h did not include any of the

analyze later.

nanticipated responses twice

or equal to 2), no further

answer out of him; he is told

is (at GRAV2).

1321 B22

BIBLIOGRAPHY

This description is far from complete and offers little explanation

of the requirements of the Sigma-7 software on which our system

depends.

follows:

The appropriate manuals for further information are as

Sigma Symbol and Metasymbol Manual (900952)

Batch Timesharing Monitor Reference Manual (901577)

Batch Timesharing Monitor Users Guide (9016:9

These documents are published by

Xerox Data Systems
701 South Aviation Boulevard
El Segundo, California 90245

Additional manuals describing this system are available. They contain

more detailed technical information for people actually using the

system. A System psers Manual assists those writing dialogs and a

System Maintenance Manual advises those who may wish to modify the

systsm and add new commands, or who wish to use the file facilities.

. 24

-

ACKNOWLEDGEMENTS

The system was developed by Estelle Warner, Alfred Bork, David Robson,

Steven Wolff, Randy Engel, Tom McGrew and Harold Deering.

Louise Healey read an earlier version of this material and offered

suggestions for improvement. Steve Ashenbrenner from XDS, El Segundo,

contributed important early advice. William Hoyland'of XDS has

supplied useful system assistance.

The project is supported by the National Science Foundation.

The facility described here is currently in use at the University of

California, Irvine. We would be pleased to have others who have

access to the Sigma-7 and Metasymbol make use of this system. For

more information or copies of the programs, please contact

Alfred M. Bork
Physics Computer Development Project
University of California, Irvine

Irvine, California 92664

